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Oocytes are large cells that develop into an embryo upon fer-
tilization1. As interconnected germ cells mature into oocytes, 
some of them grow—typically at the expense of others that 
undergo cell death2–4. We present evidence that in the nema-
tode Caenorhabditis elegans, this cell-fate decision is mechan-
ical and related to tissue hydraulics. An analysis of germ cell 
volumes and material fluxes identifies a hydraulic instability 
that amplifies volume differences and causes some germ cells 
to grow and others to shrink, a phenomenon that is related to 
the two-balloon instability5. Shrinking germ cells are extruded 
and they die, as we demonstrate by artificially reducing germ 
cell volumes via thermoviscous pumping6. Our work reveals a 
hydraulic symmetry-breaking transition central to the deci-
sion between life and death in the nematode germline.

The germline of the adult Caenorhabditis elegans hermaphrodite 
captures all the essential features to identify the mechanisms by 
which germ cells are selected to live or die. The nematode gonad is 
a tubular syncytium consisting of germ cells that surround a central 
cytoplasmic compartment called rachis, to which all the germ cells 
are connected via openings called rachis bridges3,7–10 (Fig. 1a). Germ 
cells originate in a mitotic zone from a pool of stem cells residing 
in the distal tip of each gonad arm, and undergo meiotic matura-
tion as they move towards the proximal turn3,11. During this pro-
gression, some of the germ cells grow to become oocytes, while the 
rest shrink and die by physiological apoptosis12 (Fig. 1a). Although 
the core apoptotic machinery was shown to drive the final steps of 
cell death, the mechanisms that select and initiate apoptosis in indi-
vidual germ cells are still unclear13,14.

Oocyte growth in C. elegans has been shown to rely on 
long-range cytoplasmic streaming15,16, but how and why germ 
cells shrink remains elusive. To identify a potential relationship 
between germ cell growth, shrinkage and apoptosis, we first set 
out to both quantify where germ cells grow along the gonad and 
characterize how this growth proceeds (Fig. 1b). Confocal imag-
ing followed by three-dimensional (3D)-membrane-based seg-
mentation of adult germlines expressing the membrane marker 
mCherry::PH(PLC1delta1) allowed us to measure individual germ 
cell volumes along the distal to proximal axis until the turn region 
(Supplementary Video 1). We find that germ cells near the distal 
tip have a volume of approximately 100 fl. As germ cells mature 
along the gonad, they first collectively grow in volume to approxi-
mately 150 fl (Supplementary Fig. 1a). Before the proximal turn, 

the variation in germ cell volumes increases drastically, and germ 
cells range from very small (~65 fl) to very large (~1,200 fl) sizes. 
While the distribution of germ cell volumes is unimodal in the 
distal region, it becomes bimodal close to the turn (Fig. 1b and 
Supplementary Fig. 1b). This suggests a transition from a homo-
geneous to a heterogeneous growth mode of germ cells along 
the gonad. To identify the precise location where this transition 
occurs, we investigated the average and standard deviation of 
germ cell volumes in different regions along the gonad (Fig. 1b, 
bottom inset). Both quantities appear to be linearly related but 
the associated slope changes sharply, which can be used to locate 
the transition zone to 65% ± 3.75% germline length. Two alterna-
tive methods for investigating the unimodality of distributions to 
identify the transition zone gave a similar result (Supplementary 
Information). Note that physiological apoptosis occurs proximal 
to this transition point, from about 70% to 90% germline length 
(Supplementary Fig. 1c).

Both homogeneous and heterogeneous modes of germ cell 
growth must rely on the addition of cytosolic volume. Germ cells 
can either grow by receiving material from the rachis inside or from 
the surrounding tissue outside, such as the intestine17. We set out to 
identify the two regions of growth from where the corresponding 
cytosolic volume is available. For this, we made use of the fact that 
cytosol is incompressible18 and determined the volume flux of cyto-
plasmic material through the rachis along the gonad Qr(x), where x 
denotes the position along the distal–proximal axis of the germline 
(Supplementary Information). In this one-dimensional (1D) repre-
sentation, the flux balance at the steady state can be expressed as

∂xQr = J, (1)

where J(x) denotes the germ-cell-to-rachis current. Hence, an 
increase in rachis flux Qr along the gonad implies that germ cells 
contribute material to the rachis, while a decrease means that 
germ cells receive material from the rachis. We performed par-
ticle image velocimetry (PIV)19 on mid-plane confocal sections of 
the germline expressing LifeAct::mKate to determine a cytoplas-
mic velocity field inside the rachis, which we then used to infer 
the steady-state rachis flux (Fig. 1c, Supplementary Video 4 and 
Supplementary Information). We find that Qr increases monotoni-
cally along the distal part of the gonad, peaks at approximately 
60% germline length and decreases thereafter. Hence, J is positive 
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before 60% germline length and germ cells donate material to the 
rachis, while J is negative and germ cells receive material from the 
rachis thereafter.

Interestingly, germ cells grow before 60% germline length (Figs. 
1b and Supplementary Fig. 1a) despite losing cytoplasm to the 
rachis. This implies that they must be receiving material from the 
outside. We inferred the profile of material uptake S(x) (Fig. 1d) 
from the total flux balance at the steady state:

∂x(Qc + Qr) = S, (2)

where Qc(x) denotes the volume flux associated with germ cells 
moving from distal to proximal11 (Supplementary Information). We 
find that in the distal region and up to approximately 60% gonad 
length, material uptake S is positive and germ cells grow by receiv-
ing material from the outside. Material uptake becomes negative 
beyond 60%, indicating a loss of material to the outside, possibly 
via removal of apoptotic cells. We conclude that material associated 
with the homogeneous growth of germ cells comes from the out-
side, while the heterogeneous growth mode is associated with germ 
cells receiving cytoplasm from the rachis.
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Fig. 1 | Volumes and fluxes in the C. elegans gonad. a, Top: schematic of an adult hermaphrodite gonad arm. Bottom: representative fluorescence image of 
a gonad expressing the membrane marker mCherry::PH(PLC1delta1). b, Top: germ cells colour-coded according to cell volume. Bottom: germ cell volume V 
along the gonad from distal tip (0% length) to proximal turn (100% length), for 5,265 germ cells from 18 gonad arms (bottom). Inset: s.d. plotted against 
the average of germ cell volumes determined at 40 colour-coded positions along the gonad. We observe two different relationships between s.d. and 
average, indicative of a transition between two growth modes. c, Top: cross-section of a gonad expressing LifeAct::mKate overlaid with colour-coded flow 
speeds as obtained by PIV (Supplementary Information). Bottom: cytoplasmic flux Qr through the rachis as a function of position along the gonad. Open 
circles, Qr determined from PIV speed distributions obtained from 10 gonad arms. Solid line, best parameter theory fit given the profile of material uptake 
S shown in d. d, Open circles denote material uptake S into the gonad from the outside, determined by volume conservation of rachis flux (c) and volume 
flux associated with germ cells moving from distal to proximal (Supplementary Fig. 1e). The thick dashed line shows a smoothened representation of the 
material uptake profile (Supplementary Information). Inset: green arrows indicate material uptake from the surrounding. The dashed vertical lines and grey 
boxes in b–d denote the position and associated confidence interval, respectively, where the distribution of germ cell volumes is no longer unimodal. Scale 
bars, 20 μm. Error bars indicate the error of the mean at 95% confidence.
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The observed inversion of current J around 60% germline length 
implies an inversion of the pressure difference across the rachis 
bridges separating the germ cells from the rachis. To shed light on 
the underlying force balances, we construct a 1D physical model that 
relates pressure profiles to flows of germ cells and rachis cytoplasm 
as well as material exchange between germ cells and rachis (Fig. 2a 
and Supplementary Information). The germ-cell-to-rachis current 
is driven by differences in germ cell pressure Pc(x) and rachis pres-
sure Pr(x), and it can be expressed as J = α(Pc – Pr). Here α denotes 
an effective hydraulic conductivity of rachis bridges, which depends 
on rachis bridge radii. Using the profile of material uptake (Fig. 1d), 
this theory recapitulates rachis and germ cell fluxes (indicated by 
solid lines in Fig. 1c and Supplementary Fig. 1e) and predicts a pro-
file of germ-cell-to-rachis current J that matches the experimental 
estimates (Fig. 2b). Consistent with the observation that the rachis 
flux peaks around 60% gonad length, this current changes sign at 

the same location (Fig. 2b). Because pressure differences drive the 
germ-cell-to-rachis current J, the pressure difference between the 
cells and rachis, Pc − Pr, also changes sign at this location. Next, we 
investigated if this inversion of the pressure difference might be the 
key to understanding the transition from homogeneous to heteroge-
neous mode of germ cell growth. We note that the change in unimodal 
to bimodal volume distribution is indicative of instability in the germ 
cell volumes during growth. Similar instability arises when simulta-
neously blowing into two rubber balloons in an attempt to inflate 
them both. Here only one balloon inflates. Because the larger balloon 
can be inflated at lower pressures than the smaller one, the situation 
where both simultaneously inflate is mechanically unstable20.

Could such an instability also arise in the germline21–27? We 
consider the mechanics of a simplified configuration of two germ 
cells with volumes V1 and V2 that surround a common rachis to 
which they are connected by rachis bridges (Fig. 2c). We take into 
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Fig. 2 | A theoretical model of germ cell and rachis fluxes reveals a hydraulic instability. a, Schematic of a 1D hydrodynamic model for pressures, material 
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circles, estimated germ-cell-to-rachis current J along the gonad length; vertical dashed line and grey bar denote the region of transition between the growth 
modes of germ cells (Fig. 1b). Solid line, best parameter theory fit given the profile of material uptake S shown in Fig. 1d. c, Schematic of a germ cell doublet 
and two connected balloons depicting how a difference in volumes leads to difference in pressures. d, Evolution of small volume differences between coupled 
germ cells with time. The symmetric state (ν = 0) of equal germ cell volumes is unstable when the pressure in the rachis is higher than in germ cells (right). 
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where material uptake S vanishes and pressure difference Pc – Pr changes sign. Insets illustrate cell configurations and corresponding effective potentials W 
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account force balances due to cortical tension and the fact that 
material uptake from the outside of each cell is proportional to the 
basal surface area exposed to the outside. Note that one germ cell 
can increase in size at the expense of the other. Furthermore, large 
germ cells tend to have larger rachis bridges than small germ cells 
(Supplementary Fig. 1f). With these components, we obtain an 
equation of motion for the relative volume difference ν = (V2 − V1)/
(V1 + V2) (Supplementary Information):

dν
dt = −

S
Ac

(λ(ν) + ν)− α0
Pc−Pr
2Ac

ν(1− ν)(1+ ν)

+α0
ΔP(ν)
8Ac

(

1+ 6ν2 + ν4
)

,
(3)

where Ac is the combined cross-sectional area of the two germ cells; 
λ is the relative difference in the basal surface area of the germ 
cells, which depends on ν; and α0 is the hydraulic conductivity. The 
average pressure between the two germ cells P(1)

c  and P(2)
c  can be 

expressed as Pc = (P(1)
c + P(2)

c )/2. Pressure in the two germ cells can 
differ by ΔP = P(1)

c − P(2)
c . This pressure difference ΔP depends on 

the relative volume difference ν and is similar to the pressure differ-
ence between two balloons of different sizes (Fig. 2c). For two germ 
cells, ΔP ≈ Tν/R, where T is an effective cortical tension9,15 and R is 
the radius of the gonad (Supplementary Information). This pressure 
difference, therefore, tends to destabilize the symmetric configura-
tion with equal germ cell volumes. Two additional contributions in 
equation (3) can stabilize the symmetric state. First, the effects of 
material uptake S > 0 are generally stabilizing. Second, the contribu-
tions from the difference in germ cell and rachis pressure become 
stabilizing when Pc > Pr. Hence, material uptake in the distal region 
(S > 0) leads to a situation with Pc > Pr, both of which stabilize the 
symmetric state of equal germ cell volume in this region. At around 
60% gonad length, material uptake vanishes (S ≈ 0) leading to inver-
sion of the pressure difference Pc − Pr at a point slightly proximal to 
the point at which the uptake vanishes (Figs. 1d and 2b). Beyond 
this point, the stabilizing effects are absent and the symmetric state 
is, therefore, unstable. As a result, small differences in germ cell vol-
umes increase, leading to the growth of the larger germ cell at the 
expense of the smaller one until the small cell loses its cytoplasm 
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Fig. 3 | A hydraulic instability drives cell shrinkage that triggers cell death. a, Blue dots, cell volume V along the germline for 4,030 germ cells from 
7 gonad arms where apoptosis was inhibited by ced-3(RNAi). Vertical dashed lines and grey bars in a and b denote the region of transition between the 
growth modes of germ cells for ced-3(RNAi) (Fig. 1b). Green open circles, germ-cell-to-rachis current J in ced-3(RNAi) along the germline (Supplementary 
Information). Green line, profile of the germ-cell-to-rachis current J for ced-3(RNAi) as predicted by theory, using physical parameters and the profile of 
material uptake S obtained for the non-treated control (Supplementary Information, Fig. 1d and Supplementary Fig. 2d). b, Rachis flux Qr along the gonad 
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FLUCS OUT-treated cells (right-most bar) displayed a significant increase in commencing apoptosis within 3 h. Scale bar, 5 μm. Error bars indicate the 
error of the mean at 95% confidence.
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at ν = ±1 (Fig. 2d). Equation (3) can be expressed in terms of an 
effective potential dν/dt = –dW/dν (Fig. 2e, inset). This effective 
potential W either has a single minimum at ν = 0 when the sym-
metric state with ν = 0 is stable or exhibits two minima at ν = ±1 
corresponding to the two completely asymmetric configurations, 
while the symmetric state at ν = 0 is at a maximum. Hence, germ 
cells undergo homogeneous growth in the distal region before 60%, 
beyond which they undergo heterogeneous growth as is observed 
in this regime (beyond 65% gonad length; Fig. 1b). The transition 
between these two regimes is associated with a hydraulic instability, 
which is triggered by the loss of material uptake and the associated 
inversion of the pressure difference Pc − Pr.

This hydraulic instability presents a possible mechanism by 
which germ cells become fated to die: generating a few large cells 
at the expense of smaller shrinking cells in a coarsening process. 
Apoptosis is then triggered in shrinking cells, which leads to their 
removal. However, an alternative scenario is that unknown molecu-
lar signals first induce apoptosis, which subsequently leads to the 
shrinkage of those cells fated to die. To test this alternative possibil-
ity, we inhibited the apoptosis of germ cells by RNA interference 
(RNAi)28 targeted against the caspase CED-3 (refs. 12,13) and evalu-
ated if germ cells still shrink. We find that in the absence of apop-
tosis, germ cells are no longer removed12; however, we still observe 
that some cells in the proximal region shrink (blue dots in Fig. 3a). 
Similar to unperturbed conditions, ced-3(RNAi) gonads show a 
transition from a homogeneous to a heterogeneous mode of growth 
(grey bar in Fig. 3a); further, the position of this transition is close 
but a bit proximal to the location where both germ-cell-to-rachis 
current and pressure difference between the germ cells and rachis 
change sign (Fig. 3a), and where the rachis flux peaks (Fig. 3b). 
Together, this eliminates apoptosis as the cause of germ cell shrink-
age and supports the idea that germ cell fate is determined by a 
hydraulic instability.

Our results suggest that a hydraulic instability generates large 
and small germ cells; the latter are eliminated by physiological 
apoptosis. This implies that increasing the number of small germ 
cells should lead to an increase in apoptotic germ cells. To test this, 
we depleted the small anillin isoform ANI-2 by RNAi, which is 
reported to affect the germline architecture and result in smaller 
germ cells29. Indeed, treatment with ani-2(RNAi) led to a higher 
fraction of proximal germ cells smaller than ~150 fl (Supplementary 
Fig. 2f,g) and a concomitant increase in the number of apoptotic 
cells29,30 (Supplementary Fig. 2h). Next, we set out to test if we can 
bias the outcome of this hydraulic decision-making process via 
direct mechanical manipulation. In particular, artificially reducing 
the volume of individual germ cells should increase their likelihood 
to undergo apoptosis. We tested this prediction by unidirectional 
thermoviscous pumping (focused-light-induced cytoplasmic 
streaming (FLUCS))6 for 15–20 min to pump germ cell cytoplasm 
out of individual germ cells through their rachis bridge, and moni-
toring the subsequent fate of the manipulated cells for 3 h (Fig. 3c). 
As a control, we performed bidirectional FLUCS by rapidly switch-
ing between pumping cytoplasm into and out of individual germ 
cells, with an overall similar dosage of laser light but without induc-
ing a net flow (Supplementary Video 5). In the control scenario, 
14.3% germ cells (3 out of 21) commence apoptosis within the fol-
lowing 3 h (Fig. 3d), as judged by a characteristic rounding up of 
apoptotic germ cells12. This number favourably compares with the 
rates of apoptosis in the unperturbed situation, since an apoptotic 
rate of 4–6% per hour (Supplementary Fig. 1c) leads to 11.5–17% 
germ cells commencing apoptosis within 3 h (Methods; note that 
we arrive at similar numbers when analysing neighbouring cells 
not subjected to FLUCS (Fig. 3d)). In contrast, 52.6% germ cells 
(10 out of 19) commence apoptosis within the three hours follow-
ing unidirectional FLUCS (Fig. 3c,d and Supplementary Video 6). 
We conclude that a hydraulic manipulation to reduce the volume 

of individual germ cells results in an increased likelihood of com-
mencing apoptosis. Together, this lends credence to the statement 
that the life and death decision in the gonad is of mechanical nature.

The hydraulic instability that we have discovered amplifies small 
differences in germ cell volumes and redistributes material from 
smaller to larger cells. This is consistent with observations in which 
larger oocytes continued to grow at the expense of smaller neigh-
bours even after the blockage of rachis with an oil drop15. Because 
germ cell fate is determined by size, the mechanism selects for 
larger—and perhaps—fitter cells while making use of the resources 
of the dying ones29,31. The mechanism we have discovered here bases 
a cell-fate decision on a hydraulic instability, presenting a robust 
alternative to biochemical switches usually invoked in cellular 
decision-making processes32–34.
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Methods
C. elegans strains. The following strains were used in this study:

Strain name Genotype

OD95 unc-119(ed3) III; ltIs37 [Ppie-1::mCherry::his-58; unc-119(+)] IV; 
ltIs38 [Ppie-1::gfp::PH(PLC1delta1); unc-119(+)]

UM208 unc-119(ed3) III; ltIs81 [Ppie-1::gfp-TEV-Stag::ani-2; unc-119 (+)]; 
ltIs44 [Ppie-1::mCherry::PH(PLC1delta1); unc-119(+)] IV

SWG007 nmy-2(cp8 [nmy-2::GFP unc-119+]) I; gesIs001 [Pmex-
5::LifeAct::mKate::nmy-2UTR, unc-119+]

SWG016 gesIs001 [Pmex-5::LifeAct::mKate::nmy-2UTR, unc-119+]; unc-
119(ed3) III; opIs110 [lim-7p::YFP::actin + unc-119(+)] IV.

SWG059 gesIs001 [Pmex-5::LifeAct::mKate::nmy-2UTR, unc-119+]; unc-
119(ed3) ruIs57 [pAZ147 pie-1p/GFP::C36E8.5] III

SWG121 tonSi1 [mex-5p::Dendra2::his-66::tbb-2 3'-UTR]; nmy-2(cp8 [nmy-
2::GFP unc-119+]) I; gesIs001 [Pmex-5::LifeAct::mKate2::nmy-
2UTR, unc-119+]

Confocal imaging of living germlines. Young adult worms (24 h post L4) were 
paralysed in 0.1% tetramisole (Sigma-Aldrich T1512) for 3 min on a cover slip 
precoated with 0.1% poly-l-lysine (Sigma-Aldrich P8920) and mounted on 2% 
agarose pads. Images were acquired with a spinning-disk confocal microscopy 
(Zeiss C-Apochromat, ×63/1.2NA, Yokogawa CSU-X1 scan head and Hamamatsu 
ORCA-Flash4.0 camera).

Germ cell volume quantification. Confocal imaging was performed on UM208 
young adult worms and 100 different z planes spaced 0.5 μm apart were acquired 
in 3 to 4 fields before being stitched together using Fiji’s pairwise stitching plugin. 
The 3D segmentation on the membrane marker was performed using Imaris Cell 
plugin (version 9.2).

Rachis flow quantification. Confocal imaging was performed on SWG007 young 
adult worms and five different z planes spaced 2 μm apart were acquired every 
10 s. To capture full gonads, 3 to 4 fields were acquired and stitched together using 
Fiji’s pairwise stitching plugin. The z stack corresponding to the central-most 
plane of the rachis was kept for analysis. Flow velocities were obtained by PIV 
tracking of LifeAct::mKate timelapse acquisitions19. PIV template size was 16 pixels 
corresponding to 1.695 μm. The x axis is defined as the distal to proximal axis. 
Due to geometric irregularities in the distal region of the rachis for ced-3(RNAi) 
germlines, we are only able to reliably identify steady velocity fields beyond 16% 
gonad length in the distal–proximal axis of these samples. The estimation of rachis 
flux Qr from the velocity field is based on erosion-based segmentation to find the 
centreline and is described in Supplementary Information. Note that erosion-based 
segmentation fails near the proximal turn due to high curvatures. As a result, at 
the very proximal end and at 100% gonad length, the rachis flow into the turn is 
captured by the germ-cell-to-rachis current J rather than Qr. In our analysis, this 
results in the rachis flux Qr to drop to nearly zero at 100% gonad length (Fig. 1c), 
slightly before the rachis flux actually drops to zero at the last oocyte15.

Rachis opening perimeter. Confocal imaging was performed on UM208 young 
adult worms and 100 different z planes spaced 0.5 μm apart were acquired in 3 to 
4 fields before stitching them together using Fiji’s pairwise stitching plugin. After 
maximal projections of the ANI-2::GFP slices corresponding to the upper half 
of the germline, a 2σ Gaussian blur filter was applied and the perimeter of each 
opening was quantified semi-automatically using Fiji’s wand tool. A conservative 
estimate for uncertainty is provided by the z spacing, which is 0.5 μm in this case.

RNAi experiments. RNAi experiments were performed by feeding28. L4 
worms were grown at 20 °C on feeding plates (NGM agar containing 1 mM 
isopropyl-β-D-thiogalactoside and 50 μg ml–1 ampicillin) for 48 h before imaging, 
else specified otherwise.

FLUCS. Young adult worms were paralysed and mounted between a 3% agarose 
pad and a 18 mm × 18 mm coverslip (0.17 mm thickness). The sample was 
placed on a sapphire microscope slide equipped with Peltier cooling elements, 
sealed with dental silicone (Picodent twinsil, Picodent) and mounted on the 
FLUCS microscope stage6. The samples were imaged using ×60 water immersion 
objective (UPLSAPO, 1.2NA, W-IR coating, Olympus), D2O (Sigma-Aldrich) as 
the immersion fluid, 488 nm and 561 nm laser illumination, 1 × 1 binning and 
30 s intervals at 20 z planes 1 μm apart (Olympus IX83, Yokogawa CSU-X1 scan 
head, Piezosystem Jena MIPOS 100, Andor iXon EMCCD DU-897 and Visitron 
VisiView software). Hydrodynamic flows were generated by scanning the 1,455 nm 
laser (Keopsys) at 1 kHz through the rachis opening. Custom-written LabVIEW 
software superimposed the scan path of the infrared laser with the fluorescence 
image of the camera. Following an approximately 15 min FLUCS treatment, the 
z stacks (1 μm spacing) were acquired every 15 min for 3 h. This allowed us to 

monitor the treated cell (FLUCS OUT, number of cells n = 19; FLUCS CTRL, 
n = 21) as well as its untreated neighbours (nearest, next-nearest and opposite; 
FLUCS OUT, n = 81; FLUCS CTRL, n = 94). Before and after FLUCS treatment, 
cell areas in each z plane were measured with Fiji’s freehand selection tool for 
integrating the volume of the treated cell (Supplementary Fig. 2f).

Mitotic and apoptotic rates in the germline. SWG59 (for mitosis) or SWG16 (for 
apoptosis) young adult worms were paralysed in 0.1% tetramisole (Sigma-Aldrich 
T1512) for 3 min on a cover slip precoated with 0.1% poly-l-lysine (Sigma-Aldrich 
P8920) and mounted on 2% agarose pads. Images were acquired with a 
spinning-disk confocal microscopy (Zeiss C-Apochromat, ×63/1.2NA, Yokogawa 
CSU-X1 scan head and Hamamatsu ORCA-Flash4.0 camera) on 41 different 
z planes spaced 1 μm apart, recording one full stack every 30 s. After maximal 
projections of individual movies in Fiji, the number of metaphase spindles or each 
new engulfment event—together with their position relative to the distal tip or 
proximal turn—were manually measured. The frequency of mitotic or apoptotic 
events along the total amount of imaging time was then binned to obtain a 
probability of event per unit length of the germline (Supplementary Fig. 1c). From 
these rates, an estimate of cumulative probability can be deduced. For example, at 
position x of the gonad, considering that the rate of apoptosis per hour is pa, then 
the associated total probability of a cell to survive a period of 3 h is ps = (1 − pa)3. 
Hence, the estimated total cell death should be ~100 × (1 − ps)%.

Cell number density in the germline. UM208 young adult worms (24 h post L4) 
were paralysed in 0.1% tetramisole (Sigma-Aldrich T1512) for 3 min on a cover 
slip precoated with 0.1% poly-l-lysine (Sigma-Aldrich P8920) and mounted on 
2% agarose pads. Images were acquired with spinning-disk confocal microscopy 
(Zeiss C-Apochromat, ×63/1.2NA, Yokogawa CSU-X1 scan head and Hamamatsu 
ORCA-Flash4.0 camera) on 100 different z planes spaced 0.5 μm apart. To capture 
the full gonads, 3 to 4 fields were acquired and stitched together using Fiji’s 
pairwise stitching plugin. Curved gonads were straightened using a 300 pixels 
(32 μm) wide line on the x–y stacks using Fiji’s straighten tool and resliced along 
the z axis to get the cross-sections along the distal to proximal axis (semi-automatic 
using ‘sideviews’ Fiji macro). Cell numbers around the rachis were counted in 
30 slices along the distal proximal axis and the average cell length along the distal 
proximal axis was estimated.

Estimating interface curvature. UM208 young adult worms (24 h post L4) were 
paralysed in 0.1% tetramisole (Sigma-Aldrich T1512) for 3 min on a cover slip 
precoated with 0.1% poly-l-lysine (Sigma-Aldrich P8920) and mounted on 2% 
agarose pads. Images were acquired with spinning-disk confocal microscopy 
(Zeiss C-Apochromat, ×63/1.2NA, Yokogawa CSU-X1 scan head and Hamamatsu 
ORCA-Flash4.0 camera) on 100 different z planes spaced 0.5 μm apart. To capture 
the full gonads, 3 to 4 fields were acquired and stitched together using Fiji’s 
pairwise stitching plugin. Curved gonads were straightened using a 300 pixels 
(32 μm) wide line on the x–y stacks using Fiji’s straighten tool and resliced along 
the z axis to get the cross-sections along the distal to proximal axis (semi-automatic 
using ‘sideviews’ Fiji macro). For 1/100th of the cross-section slices, the curvature 
along all the cell–cell interfaces were calculated by fitting a 5 point B-spline curve 
using the Kappa plugin in Fiji. The average curvature (μm−1) at each cross-section 
was then plotted along the distal to proximal axis. A smooth curved surface 
of a cell of 10.0 μm height and 0.5 μm maximal deflection would correspond 
to a curvature of ~0.04 μm−1, larger than the estimated curvatures shown in 
Supplementary Fig. 4b.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data generated or analysed in this study are available from the corresponding 
authors upon reasonable request.

Code availability
Codes to analyse the data and perform numeric calculations are available from the 
corresponding authors upon reasonable request.
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Extended Data Fig. 1 | Volumes and fluxes in nematode germline. A, Average volume of germ cells along the distal to proximal axis (18 germlines, bin 
size 2.5 % gonad length). Vertical dashed line and grey region indicate the transition region between growth modes (Fig. 1b). B, Transition from a uni-
modal to a bimodal distribution of germ cell volumes (left: blue dots, individual germ cell volumes as in Fig. 1b). Histograms of germ cell volumes in five 
different regions along the gonad (right). The distribution of germ cell volumes is unimodal (Gaussian fits in (i)-(iv)) in the distal region and bimodal in the 
proximal region (superposition of two Gaussian’s in (v)). C, Rates of mitotic (positive) and apoptotic events (negative) along germline length, analysed 
from 6 gonads for 30 mitotic events (Supplementary Video 2), and 4 gonads for 20 apoptotic events (Supplementary Video 3, see supplementary text). D, 
Gonad length as a function of time post hatching determined in at least nine worms. The adult germline length remains approximately constant. e, Green 
open circles, cell volume flux Qc along the gonad. This flux peaks around 60% gonad length and decreases to a finite value, indicating outflow of cells at 
the proximal turn. Grey regions indicate the transition between growth modes (Fig. 1b). Green line, theory fit (see supplementary text). F, Correlation of 
rachis bridge radii with cell volumes. Top, rachis bridge radius plotted against cell volumes for individual germ cells along the gonad (color denotes position 
x). Rachis bridge radii correlate with germ cell volumes with a Pearson coefficient of 0.43. Bottom, restricting the analysis to the proximal regime with a 
broader distribution of germ cell volumes (beyond 75% gonad length) reveals a larger degree of correlation with a Person coefficient of 0.75. Errorbars 
indicate the error of the mean at 95% confidence.
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Extended Data Fig. 2 | Genetic and physical perturbations of germ cells. A-C, Representative ced-3(RNAi) gonads. A, PIV on-axis speed (color-code) 
overlaid on a central cross section of a gonad expressing LifeAct::mKate treated with ced-3(RNAi). B, Maximum intensity projection of an adult gonad 
treated with ced- 3(RNAi), where the cell membrane expressing marker mCherry::PH-domain was imaged. C, 3D rendering of a representative ced-3(RNAi) 
germline where germ cells were segmented. Color code indicates germ cell volume. D, Open circles, rachis flux Qr for the L4440 control RNAi from 10 
gonad arms. Solid line, theory fit (see Supplementary Information). E, Standard deviation of cell volumes plotted against average cell volume for non-RNAi 
and ced-3(RNAi) germlines. F, Distribution of germ cell volumes located between 85%-100% gonad length treated with ani-2(RNAi) for 24 hours; solid 
curves indicate superposition of two Gaussian distributions; vertical dash line indicates crossover volume of 150 fL. G, Fraction of germ cells smaller than 
150 fL located at proximal end (85%-100% gonad length) for non-treated control and ani-2(RNAi) condition. H, Number of germ cell corpses per gonad 
arm under L4440 control(RNAi) (n=2) and ani-2(RNAi) treatment (n=3), identified by characteristic apoptotic rounding (see Supplementary Fig. 3). I, 
Relative volume change of germ cells during the approximately 15 min of thermoviscous pumping, for the FLUCS CTRL and FLUCS OUT experiment (Fig. 
3c). Scale bars, 20 μm. Error bars represent error of the mean at 95% confidence.
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Fiji,Scientific Python, Matlab, LabView

Data analysis Scientific Python, Matlab, IMARIS Software

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Provide your data availability statement here.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We analyzed gonad arms in individual C.elegans hermaphrodite worms, between 5 to 20 individual worms per experiment as stated in the 
figure captions.

Data exclusions The results of Imaris segmentation for germ cells volumes dot plots (figures 1 and 4), were filtered with a bandwidth of 3 standard deviation 
around the mean.

Replication We combined fields measured from different C. elegans hermaphrodite worms, which were similar to each other, hence replicability is 
ensured

Randomization Not applicable as we pursued quantitiative fits of fields between theory and experiment

Blinding Not applicable as we pursued quantitiative fits of fields between theory and experiment

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Caenorhabditis elegans

Wild animals Provide details on animals observed in or captured in the field; report species, sex and age where possible. Describe how animals were 
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released, 
say where and when) OR state that the study did not involve wild animals.

Field-collected samples For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature, 
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight No ethical approval is required when working with the nematode Caenorhabditis elegans

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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