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Abstract

Although collar cells are conserved across animals and their closest relatives, the choano-

flagellates, little is known about their ancestry, their subcellular architecture, or how they dif-

ferentiate. The choanoflagellate Salpingoeca rosetta expresses genes necessary for animal

development and can alternate between unicellular and multicellular states, making it a pow-

erful model for investigating the origin of animal multicellularity and mechanisms underlying

cell differentiation. To compare the subcellular architecture of solitary collar cells in S.

rosetta with that of multicellular ‘rosette’ colonies and collar cells in sponges, we recon-

structed entire cells in 3D through transmission electron microscopy on serial ultrathin sec-

tions. Structural analysis of our 3D reconstructions revealed important differences between

single and colonial choanoflagellate cells, with colonial cells exhibiting a more amoeboid

morphology consistent with higher levels of macropinocytotic activity. Comparison of multi-

ple reconstructed rosette colonies highlighted the variable nature of cell sizes, cell–cell con-

tact networks, and colony arrangement. Importantly, we uncovered the presence of

elongated cells in some rosette colonies that likely represent a distinct and differentiated cell

type, pointing toward spatial cell differentiation. Intercellular bridges within choanoflagellate

colonies displayed a variety of morphologies and connected some but not all neighbouring

cells. Reconstruction of sponge choanocytes revealed ultrastructural commonalities but

also differences in major organelle composition in comparison to choanoflagellates.

Together, our comparative reconstructions uncover the architecture of cell differentiation in

choanoflagellates and sponge choanocytes and constitute an important step in reconstruct-

ing the cell biology of the last common ancestor of animals.
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Author summary

Choanoflagellates are microscopic aquatic organisms that can alternate between single-

celled and multicellular states, and sequencing of their genomes has revealed that choano-

flagellates are the closest single-celled relatives of animals. Moreover, choanoflagellates are

a form of ‘collar cell’—a cell type crowned by an array of finger-like microvilli and a single,

whip-like flagellum. This cell type is also found throughout the animal kingdom; there-

fore, studying the structure of the choanoflagellate collar cell can shed light on how this

cell type and animal multicellularity might have evolved. We used electron microscopy to

reconstruct in 3D the total subcellular composition of single-celled and multicellular

choanoflagellates as well as the collar cells from a marine sponge, which represents an

early-branching animal lineage. We found differences between single-celled and multicel-

lular choanoflagellates in structures associated with cellular energetics, membrane traf-

ficking, and cell morphology. Likewise, we describe a complex system of cell–cell

connections associated with multicellular choanoflagellates. Finally, comparison of choa-

noflagellates and sponge collar cells revealed subcellular differences associated with feed-

ing and cellular energetics. Taken together, this study is an important step forward in

reconstructing the biology of the last common ancestor of the animals.

Introduction

Collar cells were likely one of the first animal cell types [1–3]. Defined as apicobasally polarised

cells crowned with an actin-rich microvillar collar surrounding an apical flagellum [4], they

are conserved across almost all animal phyla (Fig 1A) as well as in their closest living relatives,

the choanoflagellates [1]. In choanoflagellates and sponges, the undulation of the apical flagel-

lum draws bacteria and other particulate material to the collar, where it can be phagocytosed

for food. In many other animals, collar cells function as sensory epidermal cells, nephridial

cells, and various inner epithelial cells [1].

Multicellularity evolved multiple times independently in eukaryotes [1,6]. Choanoflagel-

lates are uniquely suited for investigating characteristics of the last common multicellular

ancestor of animals and the origin of animal-specific innovations. Several independent phylo-

genomic analyses [7–9] have placed them as the closest branching lineage to the animals. It is

thought that the transition from a free-swimming facultatively unicellular collar cell to one in

an obligately multicellular animal condition emerged along the animal stem lineage [2]. While

it has been hypothesised that the common ancestor of animals may have exhibited a complex,

polymorphic life cycle [10,11], parsimony suggests that at least one of these life stages would

have possessed choanoflagellate-like collar cells [1]. Investigation of the choanoflagellate cell

plan therefore has the potential to shed light on the evolution of one of the most ancient animal

cell types.

The colony-forming choanoflagellate S. rosetta [12] has emerged as a promising model

organism to investigate the properties of the progenitor of the animals [13]. This species exhib-

its a complex life cycle, transitioning through both single and colonial collar cell types [12,14]

(Fig 1B). The development of rosette colonies can be induced by rosette-inducing factor (RIF)

(Fig 1B), which is a sulfonolipid from the bacterium Algoriphagus machipongonensis [15].

Most importantly, choanoflagellate colonies form by cell division, and cells within rosette colo-

nies are held together by cytoplasmic bridges, filopodia, and extracellular matrix (ECM) [12].

Cell types of S. rosetta have been previously well investigated using molecular tools [16–18],
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which have revealed that choanoflagellates possess a suite of genes essential for animal multi-

cellularity and development.

Fig 1. 3D cellular architecture of choanoflagellates and collar cells across the Choanozoa. (A) Phylogenetic distribution of collar cells across the Choanozoa

(Choanoflagellata + Metazoa [1,5]) showing the presence (black circle), absence (white circle), and putative losses (brown cross) of collar cells across lineages.

The origin of collar cells is marked by the orange circle. Adapted from [1]. �Some lineages within the Bilateria have secondarily lost collar cells. (B) The

choanoflagellate S. rosetta exhibits a complex life cycle, transitioning through both single and colonial collar cell types. The development of rosette colonies can

be induced by RIF. Choanoflagellate colonies form through cytokinesis. (C–D) Characterisation of major organelles in S. rosetta labelled with fluorescent vital

dyes (C) and by immunofluorescence (D). Arrowhead indicates nucleus of choanoflagellates cell; asterisks indicate the stained nucleoids of engulfed prey

bacteria. Scale bar = 1 μm. (E–L) 3D ssTEM reconstruction of three single (S1–3) and three colonial (C1–3) S. rosetta cells (E, F). The association of the three

colonial cells in context with each other are shown in the white box. The plasma membrane was made transparent (G, J), and glycogen and ER were removed

to allow better visualisation of subcellular structures (H, K) and vesicle populations (I, L). Shown are apical vesicles (pink), food vacuoles (green), endocytotic

vacuoles (fuschia), ER (yellow), extracellular vesicles (grey), filopodia (external, purple), flagellar basal body (light blue), flagellum (dark green), glycogen

storage (white), Golgi apparatus and vesicles (purple), intercellular bridges (external, yellow; septa, red), large vesicles (brown), microvillar collar (light orange),

mitochondria (red), nonflagellar basal body (dark orange), and nuclei (dark blue). Scale bar = approximately 1 μm (depending on position of structure along

the z-axis). ER, endoplasmic reticulum; RIF, rosette-inducing factor; ssTEM, serial ultrathin transmission electron microscopy.

https://doi.org/10.1371/journal.pbio.3000226.g001
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However, our structural understanding of how choanoflagellate cells like S. rosetta organise

themselves into colonies—and how these compare to early-branching animal collar cells—

remains unquantified relative to molecular investigations. Given the importance of cell differ-

entiation for the origin of animals, we hypothesised that choanoflagellate colonial cells would

not simply represent a cluster of single cells but would be morphologically differentiated from

single cells. Our previous studies show that the proteins Flotillin and Homer colocalise in the

nucleus of all single choanoflagellate cells, but not in all colonial cells providing preliminary

evidence of cell differentiation within choanoflagellate rosette colonies [16]. In contrast, the

nearly indistinguishable transcriptomes of single cells and colonies [17] speak against cell

differentiation.

In this study, we used serial ultrathin transmission electron microsocopy (ssTEM) section-

ing to reconstruct the microanatomy of unicellular and colonial S. rosetta cells to identify

structural differences between collar cells in a single versus a multicellular choanoflagellate

condition. To place our choanoflagellate reconstructions into the context of collar cells from

an early-branching animal phylum, we reconstructed a section of a sponge choanocyte cham-

ber from the homoscleromorph sponge Oscarella carmela [19] (Box 1). Our characterisation

of the microanatomy of choanoflagellates and sponge choanocytes sheds light on collar cell dif-

ferentiation, has implications for the origin and evolution of animal cell types, and is an impor-

tant step in reconstructing the putative biology of the last common ancestor of the animals.

Results

3D cellular architecture of choanoflagellates

Three randomly selected single cells and three randomly selected colonial cells from a single col-

ony were chosen for the reconstruction of entire choanoflagellate cells and subcellular structures

(Fig 1, S1–S3 Figs, S1–S6 Movies). Both single and colonial S. rosetta cells exhibited a promi-

nent, central nucleus enveloped by a mitochondrial reticulum and basal food vacuoles—as well

as intracellular glycogen reserves—consistent with the coarse choanoflagellate cellular archi-

tecture reported in previous studies [20,21] (reviewed in [13,22]) (Fig 1, S1–S3 Figs, S1–S6

Movies). However, with the increased resolution of electron microscopy, we detected three

morphologically distinct populations of intracellular vesicles with distinct subcellular localisa-

tions (Fig 1G, S1I–S1L Fig): 1) large vesicles (extremely electron-lucent, 226 ± 53 nm in diame-

ter) (S1J, S1J’, and S1J” Fig); 2) Golgi-associated vesicles (electron-dense inclusions, 50 ± 10 nm

in diameter) (S1I, S1I’, and S1I” Fig); and 3) apical vesicles (electron-lucent, 103 ± 21 nm in

diameter) (S1K, S1K’ and S1K” Fig). Extracellular vesicles were also observed to be associated

with two of the single cells (electron-lucent, 173 ± 36 nm in diameter) and appeared to bud

from the microvillar membrane (S1L, S1L’ and S1L” Fig). Choanoflagellate cells subjected to

fluorescent labelling were congruent with 3D ssTEM reconstructions in terms of organelle loca-

lisation (Fig 1B and 1C), providing evidence that the 3D models presented herein are biologi-

cally representative.

Ultrastructural comparison between single and colonial choanoflagellate

cells reveals surprising differences

Our 3D ssTEM reconstructions allowed for detailed volumetric and numerical comparisons

among single and colonial S. rosetta cells (Fig 2, S2 Fig, S1 and S2 Tables). Overall, the general

deposition of major organelles was unchanged in both cell types (Fig 1E–1L, Fig 2A and 2B,

S2A–S2C Fig). In addition, single and colonial cells devote a similar proportion of cell volume

to most of their major organelles (nucleus: single cells 12.92% ± 0.58% versus colonial cells
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11.56% ± 0.27%; nucleolus: 1.85% ± 0.33% versus 2.2% ± 0.22%; mitochondria: 5.08% ± 1.14%

versus 6.63% ± 0.42%; food vacuoles: 9.22% ± 2.75% versus 6.85% ± 0.87%; and glycogen stor-

age: 8.71% ± 2.36% versus 7.50% ± 1.12%) (Fig 2, S2 Fig, S1 and S2 Tables).

We did, however, uncover some interesting ultrastructural differences between single and

colonial cells (Fig 2C). Colonial cells devoted a higher proportion of cell volume to endoplas-

mic reticulum (ER) (single: 3.27% ± 0.35% versus colonial: 6.86% ± 0.39%). This contrast was

coupled to a differential ER morphology across cell types. The ER of colonial cells frequently

displayed wide, flat sheets (Fig 3E), which were not observed in the reconstructed single cells.

Single cells exhibited a higher number of Golgi-associated vesicles (single: 166.3 ± 32.7 versus

colonial: 72.3 ± 26.5) and individual mitochondria than colonial cells (single: 25.3 ± 5.8 versus

colonial: 4.3 ± 4.2) (Fig 2C, S2 Table) despite lacking volumetric differences between cell types.

Finally, we found that colonial cells are characterised by a more amoeboid morphology

than single cells (Fig 3A). Colonial cells exhibited a higher relative proportion of endocytotic

vacuoles by volume (single: 0.07 ± 0.07 versus colonial: 0.32 ± 0.12)—a phenomenon coupled

to a higher overall number of endocytotic vacuoles (single: 1 ± 1 versus colonial: 5 ± 2) and

pseudopodial projections per cell (single: 1 ± 1 versus colonial 8 ± 2) (Fig 2C, S1 and S2

Tables). Many of the pseudopodial projections and endocytotic vacuoles bore the morphology

of lamellipod ruffles and macropinosomes (Fig 3A), suggesting that colonial cells are typified

by high macropinocytotic activity.

Reconstruction of multiple rosettes reveals colony-wide cell arrangement,

different cell shapes, and complete cell–cell contact networks

While high-magnification 3D ssTEM enabled the high-resolution reconstruction of individual

colonial cells, their context and interactions with neighbouring cells were lost. To address this,

Box 1. Definitions of terms used in the text

Amoebozoa:

A taxonomic supergroup of eukaryotic cells capable of amoeboid locomotion.

Homoscleromorpha:

A taxonomic class of marine sponges displaying basement membranes between tissue

layers.

Macropinocytosis:

A form of pinocytosis, defined as the formation of phase lucent vacuoles>0.2 μm in

diameter from wave-like, plasma membrane ruffles.

Mesohyl:

A gelatinous matrix in sponges that occupies the space between the outer pinacoderm

and inner choanoderm.

Pseudopodium:

An actin-rich, cytoplasm-filled cellular protrusion used for locomotion or feeding in

amoeboid eukaryotic cells (plural ‘pseudopodia’).

3D cellular architecture of choanoflagellates and sponge choanocytes
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we reconstructed the subcellular structures of a seven-cell rosette colony (complete rosette,

RC1) from 80-nm sections taken at lower magnification (Fig 3A–3D, S7 Movie) as well as the

gross morphology of four larger rosettes (RC2–5) from 150-nm sections to provide a more

representative survey (Fig 3E–3P). We found that individual cells in rosette colonies vary

widely in volume (Fig 3M and 3N), although no pattern was detected in the volumetric cellular

arrangement along the rosette z-axis (Fig 3M). In addition, mean cell size was comparable

among different rosettes, including those that contained different numbers of cells (S4B Fig).

However, we did find a positive correlation between cell number and the number of intercellu-

lar bridges per cell across rosette colonies (S4B Fig).

Importantly, we uncovered the presence of unusually shaped cells in two of the five S.

rosetta rosette colonies (carrot-shaped cell 5 in RC3 and chili-shaped cell 5 in RC4, both

labelled orange with an asterisk) (Fig 3M). These unusual cells were both found at the same

location along the rosette z-axis, exhibited an elongated morphology distinct from other colo-

nial cells (Fig 3O and 3P and S8 and S9 Movies), and were small in volume. Cells 5 from RC3

and RC4 were 9.87 μm3 and 13.35 μm3, respectively (Fig 3N)—the mean volume of the cells in

RC3 and RC4 was 27.38 μm3 and 27.25 μm3, respectively (Fig 3N). While each of these unusual

Fig 2. 3D ssTEM reconstructions allow for volumetric and numerical comparison of high-resolution single and colonial S. rosetta cells.

Shown are the mean volumetric breakdowns of three single (A) and three colonial (B) S. rosetta cells (left) and a generalised diagram of cell type

ultrastructure (right). Colours are as in Fig 1. (C) Volumetric (%) (±SEM) (ER and endocytotic vacuoles) and numerical (μm−3) (±SEM)

(endocytotic vacuoles, pseudopodia, Golgi-associated vesicles, and mitochondria) differences were found between single and colonial (n = 3) S.

rosetta cells. �P< 0.05, ��P< 0.01, ���P< 0.001. ER, endoplasmic reticulum; ssTEM, serial ultrathin transmission electron microscopy.

https://doi.org/10.1371/journal.pbio.3000226.g002
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Fig 3. Reconstructions of complete choanoflagellate RCs places colonial cells into context and unveils

ultrastructural features involved in rosette formation and a novel cell type. (A–D) 3D ssTEM reconstruction of a

complete RC1. The plasma membrane was made transparent (B) to allow better visualisation of subcellular structures.

Highlighted are contacting FP (C) and IBs (D). Cellular structures coloured as in Fig 1. Scale bar = approximately

1 μm. (E–L) 2D TEM and 3D ssTEM reconstructions of structures (�) differentially exhibited by colonial cells or

involved in colony formation. Shown are the ER (E, F), IBs (G, H), EV (I, J), and FP (K, L). Scale bars = 200 nm. (M–P)

Reconstruction of multiple S. rosetta colonies shows no strong pattern of volumetric distribution and bridge networks

3D cellular architecture of choanoflagellates and sponge choanocytes
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cells possessed a flagellum, a collar, connections to neighbouring cells via intercellular bridges,

and had a similar proportion of cell volume dedicated to most of their major organelles as

observed in other colonial cells, these cells devoted a larger volumetric percentage of the cell

body to the nucleus (29.8% and 30.78%, respectively, versus the mean colonial proportion of

13.76% ± 0.49%).

Our 3D ssTEM reconstructions of rosette colonies also revealed the distribution of intercel-

lular bridges and the connections formed between individual cells (Fig 3M). We found inter-

cellular bridges in all analysed rosette colonies (RC1–5), totalling 36 bridges. There was no

detectable pattern regarding bridge networking across rosette colonies. Bridges were distrib-

uted from the cell equator to either of the poles along the cellular z-axis, and the average bridge

was 0.75 ± 0.38 μm in length (S4C Fig). Prior studies [12,17] of S. rosetta bridges suggested

that bridges are typically short (0.15 μm), connecting two adjacent cells and containing parallel

plates of electron-dense material. In contrast, the bridges detected in this study exhibited strik-

ing morphological diversity (Fig 3M, 3Q–3U), with lengths ranging from 0.21–1.72 μm. The

majority of bridges consisted of a protracted cytoplasmic connection between two cells, and in

many cases, the septum was localised asymmetrically along the bridge (S4C Fig). Most surpris-

ingly, some bridges were not connected to any neighbouring cells at all, but rather the septum

was situated on the end of a thin, elongated cellular protrusion (Fig 3S). In addition, we

observed asymmetric bridge width and degraded electron-dense structures proximal to bridge

remnants being incorporated into the cell body of a contiguous cell (Fig 3T and 3U). These

data suggest that intercellular bridges could be disconnected from neighbouring cells and that

the electron-dense septum may be inherited.

Comparison of 3D cellular architecture between choanoflagellates and

sponge choanocytes

Both choanoflagellates and sponge collar cells influence local hydrodynamics by beating their

single flagellum to draw in bacteria that are captured by the apical collar complex [23], how-

ever sponge choanocytes are part of an obligately multicellular organism (Fig 4A). Sponge cho-

anocytes therefore provide an excellent representative of an early-branching animal collar cell

against which to compare choanoflagellate cell architectures. Our 3D ssTEM reconstructions

allowed for the reconstruction of five choanocytes and for the volumetric and numerical com-

parison of choanocyte and choanoflagellate subcellular structures (Fig 4B–4E, S5 and S6 Figs,

S10 Movie). We detected little ultrastructural variability between the five choanocytes (S5 Fig,

S3 and S4 Tables). All five cells exhibited a prominent basal nucleus, small and unreticulated

mitochondria, food vacuoles scattered around the entire cell, and an apical Golgi apparatus

(Fig 4B–4D, S5 and S6 Figs)—consistent with the coarse choanocyte cellular architecture

reported in previous studies [23,24] (reviewed in [1,25]).

but reveals the presence of highly derived cell morphologies. (M) 3D ssTEM reconstructions of five complete rosettes

(RC1–5) coloured by cell number (above), and 2D projections of bridge connections in 3D ssTEM reconstructions of

RCs (below). Disconnected IBs marked by white arrowheads and lines. Asterisks mark the presence of highly derived

cell morphologies in RC3 and RC4. Cells in RCs are numbered in order of their appearance along the z-axis. (N)

Volumetric distribution of mean cell volumes (RC1–5) in RCs reveals no apparent pattern of cell distribution across

the z-axis. (O, P). Two highly derived cell types, the ‘carrot cell’ (O) from RC3 and the ‘chili cell’ (P) from RC4, were

identified in RCs. Colours as in Fig 1. Scalebar = approximately 1 μm. (Q–U) IBs in colonial S. rosetta exhibit a high

diversity of morphologies, suggestive of disconnection. In addition to prior descriptions of IBs (arrowheads) and

electron-dense septa (asterisks), bridges in colonial S. rosetta often display an asymmetrically distributed septum (Q),

protracted and elongated morphology (R), disconnection from one of the contiguous cells (S), evidence of abscission

(T), and putative inheritance of the septum (U). Scale bar = 200 nm. ER, endoplasmic reticulum; EV, endocytotic

vacuoles; FP, filopodia; IB, intercellular bridge; RC, rosette colony; ssTEM, serial ultrathin transmission electron

microscopy.

https://doi.org/10.1371/journal.pbio.3000226.g003
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Fig 4. 3D cellular architecture of sponge choanocytes. (A) Choanocytes line interconnected chambers in members of the Porifera

and serve as feeding cells. (B) Mean volumetric breakdown of five sponge choanocytes. Colours are as in Fig 1. (C–E) 3D ssTEM of a

section of choanocyte chamber containing five complete cells (B). The plasma membrane was rendered transparent (D), and food

vacuoles and ER were removed to allow better visualisation of subcellular structures (E). Colours are as in Fig 1. Scale

bar = approximately 1 μm. (F–G) Reconstruction and comparison of the sponge choanocyte (F) and choanoflagellate (G) apical poles

shows distinct differences between the two cell types. Shown in the choanocyte reconstruction are the basal foot (red, associated with

basal body), food vacuole (light green), ER (yellow), flagellar basal body (light blue), flagellum (dark green), Golgi apparatus and

Golgi-associated vesicles (purple), microtubules (grey), mitochondria (red), nonflagellar basal body (dark orange), Type 1 vesicles

3D cellular architecture of choanoflagellates and sponge choanocytes
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Furthermore, our data showed many ultrastructural commonalities between sponge cho-

anocytes and choanoflagellates. For example, the number of microvilli that surround the apical

flagellum in single and colonial choanoflagellates is comparable to the number of microvilli in

sponge choanocytes (single: 32 ± 2 versus colonial: 35.3 ± 4.9 versus choanocytes: 30.6 ± 4.1)

(S6A Fig). We also found that the number of food vacuoles and the number and volumetric

proportion of the Golgi apparatus are similar in all three cell types (S6A Fig). Although sponge

choanocytes did not appear to exhibit the same macropinocytotic activity as colonial choano-

flagellates throughout the cell (some micropinocytotic inclusions are present toward the cell

apex [S6D and S6E Fig]), basal sections of choanocytes were heavily amoeboid (S6B and S6C

Fig). These amoeboid protrusions may not only be for mechanical anchorage into the mesohyl

but may play a role in phagocytosis, as we observed bacteria in the mesohyl to be engulfed by

basal pseudopodia (S6F and S6G Fig). Thus, both choanocytes and colonial choanoflagellates

are typified by high-amoeboid cell activity.

We also observed some ultrastructural differences between choanocytes and choanoflagel-

lates. In contrast with cells from choanoflagellate rosettes, sponge choanocytes lack filopodia

and intercellular bridges. Choanocytes also do not possess glycogen reserves and devote signif-

icantly less of their cell volume (9.25% ± 0.39%) than choanoflagellates (single: 12.92% ± 0.58%

and colonial: 11.56% ± 0.27%) to the nucleus and less to mitochondria (2.5% ± 0.3% versus

single: 5.08% ± 1.14% and colonial: 6.63% ± 0.42%) (S6A Fig). However, choanocytes devote

significantly more of their volume to food vacuoles (20.7% ± 1.01%) than choanoflagellates

(single: 9.22% ± 2.75% and colonial: 6.85% ± 0.87%) (Fig 4E). High-resolution reconstructions

of the choanocyte and choanoflagellate apical pole (Fig 4F and 4G, S11 and S12 Movies)

showed differences in terms of vesicle type and localisation, Golgi positioning, and collar

arrangement (conical in choanoflagellates while cylindrical in choanocytes, as previously

noted [23]). The flagellar basal body has previously been meticulously characterised in both

choanocytes and choanoflagellates, and some differences have been reported between the two

by other authors [26–31]. These findings are reiterated by our reconstructions and observa-

tions (Fig 4F and 4G).

Discussion

Our comparison between single and colonial choanoflagellate cells provides new insights into

ultrastructural commonalities and differences associated with the conversion of solitary to

colonial cells. Our study also revealed morphologically distinct populations of vesicles in choa-

noflagellates. Golgi-associated vesicles (S1I, S1I’ and S1I” Fig), due to their tight association

with the Golgi apparatus, likely represent standard Golgi-trafficking vesicles carrying cargo

between the different Golgi cisternae [4]. Apical vesicles (S1K, S1K’ and S1K” Fig), due to their

close proximity to the plasma membrane, are probably secretory vesicles involved in exocytosis

of ECM material [4], which bud off the trans-Golgi network and fuse with the plasma mem-

brane. The localisation of neurosecretory soluble N-ethylmaleimide-sensitive-factor attach-

ment receptor (SNARE) proteins to the apical pole of the choanoflagellate Monosiga brevicollis
supports this hypothesis [32,33]. The large vesicles (S1J, S1J’ and S1J” Fig) may not represent

true vesicles but rather nascent food vacuoles, congruent with what is already known about

(light orange), and Type 2 vesicles. Shown in the choanoflagellate reconstruction are the apical vesicles (pink), food vacuole (light

green), ER (yellow), flagellar basal body (light blue), flagellum (dark green), Golgi apparatus and Golgi-associated vesicles (purple),

glycogen (white), large vesicles (brown), microtubules (grey), microtubular ring (red), and nonflagellar basal body (dark orange). Scale

bars = 200 nm. Diagrams of the choanocyte fine kinetid (F) and choanoflagellate fine kinetid (G) structure highlight the distinct

differences. ER, endoplasmic reticulum; ssTEM, serial ultrathin transmission electron microscopy.

https://doi.org/10.1371/journal.pbio.3000226.g004
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phagocytosis in choanoflagellates [34]. The finding of extracellular vesicles (S1L, S1L’ and S1L”

Fig) associated with the S. rosetta microvillar collar is, to our knowledge, a novel finding in

choanoflagellates. Extracellular vesicles in animal cells play diverse roles in cell physiology,

such as antigen presentation (reviewed by [35]), morphogenesis [36,37], and disseminating

pathogenic proteins [38,39]. Association of extracellular vesicles with apical microvilli, as

reported here in S. rosetta, bears a striking similarity to animal enterocytes [40]. Extracellular

vesicles released from enterocyte microvilli are enriched in intestinal alkaline phosphatase and

are thought to be antibacterial in nature [40,41]. It is therefore conceivable that choanoflagel-

late extracellular vesicles too contain hydrolytic enzymes to catalyse the degradation of bacteria

in the collar—the site of prey capture [34].

Moreover, our findings reveal that colonial cells likely represent distinct and differentiated

cell types relative to single cells. The ultrastructural differences between single and colonial

cells in ER, Golgi-associated vesicles, and the amoeboid and pinocytotic nature of colonial

cells hint toward a demand on endomembrane reorganisation and intracellular trafficking

(one possibility could be the increased uptake of RIF-1 to keep colonies intact). ER and mito-

chondrial morphology change dynamically, and stark changes have been observed in other

eukaryotic cells due to changes in cell cycle [42] and cytoskeletal activity [43,44]. Mitochondria

and the ER also show an intimate association [45], and the contrast in the number of individ-

ual mitochondria in different choanoflagellate cells was particularly striking. The reduced

numbers of mitochondria in colonial cells indicate a lower energy consumption than in single

cells. The demand on energy in single cells, which have to swim to find new food sources, may

well be higher than in colonial cells, which do not have to swim, as they tumble to stay in food-

rich environments. In animal cell types, fusion/fission dynamics have been previously associ-

ated with cellular stress [46] and substrate availability [47], but it is of most interest for choano-

flagellates in the context of aerobic metabolism. For example, the fresh water choanoflagellate

Desmarella moniliformis exhibits a shift in mitochondrial profile prior to encystment and met-

abolic dormancy [48], and choanoflagellates have been uncovered from hypoxic waters [49].

The role of oxygen in the origin and evolution of the animals has long been discussed [50] and

is currently met with controversy [51,52]. Coupled to a previous report of positive aerotaxis in

S. rosetta rosette colonies [53], our finding emphasises the need to better understand variation

in aerobic metabolism between single and colonial choanoflagellates.

Particularly surprising was the finding of extensive macropinocytotic activity in colonial

cells. Macropinocytosis—defined by the formation of phase-lucent vacuoles >0.2 μm in diam-

eter from wave-like, plasma membrane ruffles [54]—is conserved from the Amoebozoa [55] to

animal cell types [56]. It is parsimonious to infer that the macropinocytotic activity of S. rosetta
colonial cells represents a trophic adaptation considering that previous biophysical studies

have reported more favourable feeding hydrodynamics in rosette colonies [57], although a

more recent study does not confirm these findings [53]. Even in macropinosomes with no

observable cargo, dissolved proteins [58] and ATP [56] from extracellular fluid have been pre-

viously reported to be metabolically exploited by animal macropinocytotic cell types. However,

this nonselectivity, coupled with the large volume of engulfed fluid, makes macropinocytosis

an efficient cellular process to sample the extracellular milieu. It is therefore tempting to specu-

late that macropinocytosis may also play a role in detecting environmental chemical signals in

colonial S. rosetta cells.

The reconstruction of multiple choanoflagellate rosette colonies reveals the asymmetric and

disconnected morphology of intercellular bridges and provides important clues to choanofla-

gellate colony formation and potentially the evolution of animal multicellularity. Bridges dis-

playing electron-dense septa reminiscent of those found in S. rosetta have been previously

identified in other colony-forming choanoflagellate species [59], and it has been hypothesised
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that these structures represent stable channels for intercellular communication [17]. Our data

suggest that bridges can be disconnected and that the electron-dense septum may be asymmet-

rically inherited. In this way, choanoflagellate bridges may resemble the mitotic midbody in

animal cells [60]. Relatively recent molecular studies have suggested that inheritance of the

mitotic midbody may be associated with diverse developmental roles [61–63] in the recipient

cell. While homology between the electron-dense septum in choanoflagellates and metazoan

midbodies cannot be determined from these data, asymmetric inheritance of this structure

could play an analogous role in the development of colonial cells. It may still be that S. rosetta
bridges play a role in cell–cell communication, albeit transiently. However, the exit of colonial

cells from the rosette (as previously reported [12]) must involve bridge disconnection, and a

proper understanding of the fate of the septum could augment our understanding of choano-

flagellate cell differentiation and destiny in colony development.

The discovery of the highly derived ‘carrot’ and ‘chili’ cell types was not expected (Fig 3O

and 3P). The morphological similarity, the enlarged nuclear volume, and the position on the

colony z-axis shared between the two cells suggests that they represent a distinct S. rosetta cell

type in rosette colonies. These data hint that cell differentiation within colonies may be more

complex than previously realised and provide potential evidence for division of labour in choa-

noflagellate colonies. Previously proposed models of animal evolution via a colonial intermedi-

ate place emphasis on cellular differentiation and division of labour as key innovations toward

obligate animal multicellularity [2,64]. We cannot exclude the possibility that the carrot- and

chili-shaped cells are results of cells preparing to divide or cells shortly after cell division, but

we think this is highly unlikely. There is no precedence for it in the literature, and our own

live-cell observations of choanoflagellate cell divisions do not support this either. ‘Chili’ and

‘carrot’ cells in choanoflagellate colonies might be either caused by programmatic cellular dif-

ferentiation or stochastic developmental noise. Cells in rosettes, which have different numbers

of intracellular bridges and adjacent cells, may sense (through macropinocytosis) and respond

(through apical vesicles) to the local environment of cells, thus making stochastic, cell-autono-

mous differentiation more likely than deterministic cell differentiation. We cannot rule out

either of these causes at the moment but believe further research into the cell biology of these

putative novel cell types is desperately needed, and single-cell transcriptomic data and live-cell

imaging of choanoflagellate rosette development could shed more light on cell type variation

in rosette colonies.

The 3D cellular architecture of sponge choanocytes allowed for the detailed comparison of

their architecture with choanoflagellates. Although we observed many ultrastructural similari-

ties between choanoflagellates and sponge choanocytes, there were noteworthy differences in

terms of food vacuole, mitochondria, and glycogen composition. This is likely due to the dif-

ferent physiological niches occupied by the two cell types. As free-living protists, choanoflagel-

lates must maintain energetically costly motility and may devote a larger proportion of their

cytoplasm to mitochondrial reticula and glycogen stores at the expense of food vacuoles. Cho-

anocytes are but one cell type in a sessile multicellular organism that exhibits cellular differen-

tiation and strict division of labour. As such, choanocytes represent a specialised feeding cell

type (which devotes a significantly higher amount of its cell volume to food vacuoles) that

operates a vastly different physiology to the independent ancestral collar cell. These ultrastruc-

tural differences are good identifying features marking the differential biology of generalist

versus specialist collar cells.

Recently, morphological and functional differences between choanocytes and choanoflagel-

lates have been taken as evidence that collar cells have evolved by convergent evolution for

feeding on bacteria [23,65]. Evolution is expected to lead to differences among homologous

structures (an excellent example are vertebrate limbs that are all very different—some are
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wings, some are legs, some are fins but are still homologous) and thus it is not surprising to

observe (ultra)structural differences between choanoflagellates and choanocytes.

Concluding remarks

While we recognise the limitations of our findings due to the morphological descriptive nature

of this study and the small sample size, the comparative 3D reconstruction of collar cells from

two different phyla, choanoflagellates and sponges, allowed for an unbiased view of their cellu-

lar architecture and for the reconstruction of key properties of the enigmatic ancestral collar

cell. Our data reveal distinct ultrastructural features in single and colonial choanoflagellates

and demonstrate that cells within rosette colonies vary significantly in their cell size and shape.

The newly identified ‘carrot’ and ‘chili’ cells reveal that cells within choanoflagellate colonies

do not simply consist of an assemblage of equivalent single cells, but some may represent a dis-

tinctly differentiated cell type displaying ultrastructural modifications. Likewise, our data sug-

gest that sponge choanocytes are not simply an incremental variation on the choanoflagellate

cell plan but are specialised feeding cells, as indicated by their high volumetric proportion of

food vacuoles. Together, our data show a remarkable variety of collar cell architecture and sug-

gest cell type differentiation may have been present in the stem lineage leading to the animals.

Materials and methods

Cell culture

Colony-free S. rosetta cultures (ATCC 50818) were grown with coisolated prey bacteria in

0.22 μm filtered choanoflagellate growth medium [66] diluted at a ratio of 1:4 with autoclaved

seawater. Cultures were maintained at 18˚C and split 1.5:10 once a week. Colony-enriched S.

rosetta cultures (PX1) were likewise maintained but monoxenically cultured with the prey bac-

terium A. machipongonensis [67] to induce rosette formation.

Fluorescent labelling of organelles

To support the annotation of organelles from ssTEM sections, the microanatomy of S. rosetta
cells was chemically characterised by fluorescent vital staining. Cells were pelleted by gentle

centrifugation (500x g for 10 min at 4˚C) in a Heraeus Megafuge 40R (ThermoFisher Scien-

tific) and resuspended in a small volume of culture medium. Concentrated cell suspension

(500 μl) was applied to glass-bottom dishes, coated with poly-L-lysine solution (P8920, Sigma-

Aldrich), and left for 10–30 min until cells were sufficiently adhered. PX1 cultures were con-

centrated into 100 μl of culture medium to promote the adherence of rosette colonies.

Adhered cells were incubated in 500 μl of fluorescent vital dye diluted in 0.22 μm filtered

seawater. Cells were incubated with 4.9 μM Hoechst 33342 Dye for 30 min (to label nuclei),

1 μM LysoTracker Yellow HCK-123 for 1.5 h (to label food vacuoles), and 250 nM Mito-

Tracker Red CM-H2Xros for 30 min (to label mitochondria). All vital dyes were from Ther-

moFisher Scientific (H3570, L12491, T35356, and M7513, respectively). Fluorescent-DIC

microscopy was conducted under a 100x oil-immersion objective lens using a Leica DMi8 epi-

fluorescent microscope (Leica, Germany). Vital dyes were viewed by excitation at 395 nm and

emission at 435–485 nm (Hoechst 33342 Dye), 470 nm and emission at 500–550 nm (Lyso-

Tracker Yellow HCK-123 and FM 1–43 Dye), and 575 nm and 575–615 nm (MitoTracker Red

CM-H2Xros). Micrographs were recorded with an ORCA-Flash4.0 digital camera (Hamama-

tsu Photonics, Japan). All cells were imaged live. No-dye controls using only the dye solvent

dimethyl sulfoxide (DMSO) (D4540, Sigma-Aldrich) were run for each wavelength to identify
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and control for levels of background fluorescence. Chemical fixation during vital staining and

TEM sectioning was avoided where possible in this study to reduce fixation artefacts.

To visualise cell bodies, flagella, filopodia, and collar-adherent cells were fixed for 5 min

with 1 ml 6% acetone and for 15 min with 1 ml 4% formaldehyde. Acetone and formaldehyde

were diluted in artificial seawater, pH 8.0. Cells were washed gently four times with 1 ml wash-

ing buffer (100 mM PIPES at pH 6.9, 1 mM EGTA, and 0.1 mM MgSO4) and incubated for 30

min in 1 ml blocking buffer (washing buffer with 1% BSA and 0.3% Triton X-100). Cells were

incubated with primary antibodies against tubulin (E7, 1:400; Developmental Studies Hybrid-

oma Bank), diluted in 0.15 ml blocking buffer for 1 h, washed four times with 1 ml of blocking

buffer, and incubated for 1 h in the dark with fluorescent secondary antibodies (1:100 in block-

ing buffer, Alexa Fluor 488 goat anti-mouse). Coverslips were washed three times with wash-

ing buffer, incubated with Alexa Fluor 568 Phalloidin for 15 min, and washed again three

times with washing buffer. Coverslips were mounted onto slides with Fluorescent Mounting

Media (4 ml; Prolong Gold Antifade with DAPI, Invitrogen). Images were taken with a 100x

oil-immersion objective on a Leica DMI6000 B inverted compound microscope and Leica

DFC350 FX camera. Images presented as z-stack maximum intensity projections.

Electron microscopy

High-pressure freezing. Cultured S. rosettta single and colonial cells were concentrated by

gentle centrifugation (500x g for 10 min), resuspended in 20% BSA (Bovine Serum Albumin,

Sigma) made up in artificial seawater medium, and concentrated again. Most of the supernatant

was removed and the concentrated cells transferred to high-pressure freezing planchettes vary-

ing in depth between 50 and 200 μm (Wohlwend Engineering). For sponges, tiny pieces of O.

carmela were excised and mixed with 20% BSA made up in seawater before transferring to 200-

μm deep high-pressure freezing planchettes. Freezing of both the choanoflagellate and sponge

samples was done in a Bal-Tec HPM-010 high-pressure freezer (Bal-Tec AG).

Freeze substitution. High-pressure frozen cells stored in liquid nitrogen were transferred

to cryovials containing 1.5 ml of fixative consisting of 1% osmium tetroxide plus 0.1% uranyl

acetate in acetone at liquid nitrogen temperature (−195˚C) and processed for freeze substitu-

tion according to the method of McDonald and Webb [68,69]. Briefly, the cryovials containing

fixative and cells were transferred to a cooled metal block at −195˚C—the cold block was put

into an insulated container such that the vials were horizontally oriented—and shaken on an

orbital shaker operating at 125 rpm. After 3 h, the block/cells had warmed to 20˚C and were

ready for resin infiltration.

Resin infiltration and embedding. Resin infiltration was accomplished according to the

method of McDonald [69]. Briefly, cells were rinsed three times in pure acetone and infiltrated

with Epon-Araldite resin in increasing increments of 25% over 30 min plus three changes of

pure resin at 10 min each. Cells were removed from the planchettes at the beginning of the

infiltration series and spun down at 6,000x g for 1 min between solution changes. The cells in

pure resin were placed in between two PTFE-coated microscope slides and polymerised over 2

h in an oven set to 100˚C.

Serial sectioning. Cells/tissues were cut out from the thin layer of polymerised resin and

remounted on blank resin blocks for sectioning. Serial sections of varying thicknesses between

70–150 nm were cut on a Reichert-Jung Ultracut E microtome picked up on 1 x 2-mm slot

grids covered with a 0.6% Formvar film. Sections were poststained with 1% aqueous uranyl

acetate for 7 min and lead citrate [70] for 4 min.

Imaging. Images of cells on serial sections were taken on an FEI Tecnai 12 electron

camera.
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3D reconstruction and analysis

ssTEM sections were imported as z-stacks into the Fiji [71] plugin TrakEM2 [72] and automat-

ically aligned using default parameters, except for increasing steps per octave scale to 5 and

reducing maximal alignment error to 50 px. Alignments were manually curated and adjusted

if deemed unsatisfactory. Organelles and subcellular compartments were manually segmented

and 3D reconstructed by automatically merging traced features along the z-axis. Meshes were

then preliminarily smoothed in TrakEM2 and exported into the open-source 3D software

Blender 2.77 [73]. Heavy smoothing of the cell body in TrakEM2 sacrifices fine structures asso-

ciated with cellular projections or does not remove all distinct z-layers, which exist as recon-

struction artefacts. Therefore, cell bodies were manually smoothed using the F Smooth Sculpt

Tool in Blender of final distinct z-layers for presentation purposes only (S3 Fig). All organelles

were subjected to the same smoothing parameters across individual cells. All analysis was con-

ducted using unsmoothed, unprocessed meshes. Organelle volumes were automatically quan-

tified by the TrakEM2 software and enumerated in Blender 2.77 by separating meshes in their

total loose parts.

The microvillar collar and flagellum were excluded from volumetric analysis, as their total,

representative length could not be imaged at this magnification. Cytosolic volume was calcu-

lated by subtracting total organelle volume from cell body volume and is inclusive of cytosol,

ribosomes, and unresolved smaller structures excluded from 3D reconstruction. Endocytotic

vacuoles were distinguished from food vacuoles by connection to the extracellular medium in

ssTEMs or by localisation to a cell protrusion. Cells in rosette colonies are numbered in order

of their appearance along the image stack z-axis. Rosette colony diameters were calculated by

measuring the largest distance of the z-axis midsection. Bridge length was measured in one

dimension along the bridge midsection. Mean vesicle diameters were calculated from 20 mea-

surements (or as many as possible if the vesicle type was rare) from single cells.

Data analysis

Univariate differences in the volume and number of subcellular structures between the two

cell types were evaluated using two-sample t tests. Shapiro–Wilk and Levene’s tests were used

to assess normality and homogeneity of variance, respectively. Statistical comparisons were

conducted using data scaled against total cell volume. Correlations between colony cell num-

ber, cell volume, and bridges per cell were assessed using Pearson correlation tests. All statisti-

cal analyses were conducted using R v 3.3.1 [74] implemented in RStudio v 0.99.903 [75].

Supporting information

S1 Fig. High-magnification TEM panel of the S. rosetta (A–L) and O. carmela (M–T) sub-

cellular components discussed herein. (A) S. rosetta nucleus showing endoplasmic reticulum,

euchromatin, heterochromatin, nuclear membrane, nuclear pore complex and nucleolus. (B)

Mitochondrion showing flattened, nondiscoidal cristae. (C) Apical pole showing flagellum, fla-

gellar basal body, nonflagellar basal body, tubulin filaments, and transversal plate. (D) Area of

high glycogen storage. (E) Food vacuole. (F) Posterior filopodia projecting from the basal

plasma membrane. (G) Golgi apparatus. (H) Microvillus from the apical collar displaying

actin filaments. (I–I”) Golgi-associated, electron dense vesicles. (J–J”) Apical, electron-lucent

vesicles. (K–K”) Large, extremely electron-lucent vesicles. (L–L”) Extracellular vesicles were

observed in two of the single cells and appeared to bud from the microvillar membrane. (M)

O. carmela nucleus showing euchromatin, heterochromatin and nuclear pore complex. (N)

Mitochondria displaying cristae. Also visible are cell–cell contacts between two adjacent cho-

anocytes. (O) Collar microvillus. (P) Apical pole and Golgi apparatus showing flagellum,
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flagellar basal body, nonflagellar basal body, tubulin filaments, and basal foot. (Q) Food vacu-

ole. (R) Rough and smooth endoplasmic reticulum. (S) Basal pole of O. carmela shows bacteria

located in the mesohyl, basal pseudopodia, and endocytotic invagination. (T) Vesicles type 1

(V1) and type 2 (V2) are located throughout the choanocyte cytoplasm. Scale bars = 200 nm,

except (L–L”) = 500 nm. af, actin filaments; b, bacteria; bf, basal foot; cc, choanocytes; cr, cris-

tae; dv, food vacuole; er, endoplasmic reticulum; eu, euchromatin; ev, endocytotic invagina-

tion; f, flagellum; fbb, flagellar basal body; fp, posterior filopodia; ga, golgi apparatus; gly,

glycogen storage; he, heterochromatin; m, mitochondrion; mv, microvillus; n, nucleolus; nfbb,

nonflagellar basal body; nm, nuclear membrane; npc, nuclear pore complex; pm, plasma mem-

brane; ps, pseudopodia; rer, rough endoplasmic reticulum; ser, smooth endoplasmic reticu-

lum; TEM, transmission electron microscopy; tf, tubulin filaments; tp, transversal plate

(PDF)

S2 Fig. 3D ssTEM reconstructions of high-resolution single and colonial S. rosetta cells.

(A) Gross external morphologies of reconstructions of both single (S1–3) and colonial (C1–3)

S. rosetta cells. (B–C) Structomic reconstructions of single (B) and colonial (C) S. rosetta cells,

with the plasma membrane removed to reveal subcellular ultrastructure. Colours are as in Fig

1. Asterisks indicate engulfed prey bacteria. Cells are labelled with their corresponding cell ID

number and volumetric breakdown for each cell is shown below reconstructions. Scale

bar = approximately 1 μm. ssTEM, serial ultrathin transmission electron microscopy.

(PDF)

S3 Fig. Methodological overview of 3D ssTEM reconstruction of S. rosetta and O. carmela
cells. (A) ssTEM stacks are imported into the Fiji plugin TrakEM2, aligned, and scaled. Subcel-

lular structures are then manually segmented. (B) 3D ssTEM reconstructions are conducted in

TrakEM2 by merging traced structures along the z-axis, initially smoothed and imported into

Blender (C). In Blender, final reconstruction artefacts are smoothed using the F Smooth Sculpt

Tool and final materials are added for the ultimate render (D). (E) The aforementioned meth-

odology applied to single cells (S1–3), colonial cells (C1–3), a complete RC and a section of an

O. carmela choanocyte chamber. RC, rosette colony; ssTEM, serial ultrathin transmission elec-

tron microscopy.

(PDF)

S4 Fig. Mean cell volume per colony cell number, intercellular bridges per colony cell num-

ber and bridge length. (A) No correlation was found between cell volume and colony cell

number. (B) A positive correlation was found between bridges per cell and colony cell number

(P< 0.05). (C) No apparent pattern was observed between the length of an intercellular bridge

and its position along the colony z-axis.

(PDF)

S5 Fig. 3D reconstructions and volumetric breakdown of five sponge choanocytes. (A–B)

3D ssTEM reconstructions of five O. carmela choanocytes and their volumetric breakdown is

shown below. Scale bar = approximately 1 μm. ssTEM, serial ultrathin transmission electron

microscopy.

(PDF)

S6 Fig. Volumetric and numerical comparison of choanocyte and choanoflagellate major

subcellular structures. (A) Choanocytes from O. carmela are significantly larger by volume

(μm3) than the single and colonial choanoflagellate S. rosetta cells. Volumetric (%) (±SEM)

(nucleus, nucleolus, mitochondria, ER, food vacuoles, and glycogen storage) and numerical

(μm−3) (±SEM) (mitochondria) differences were found between sponge choanocytes (n = 5)
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and single (n = 3) and colonial (n = 3) choanoflagellates. �P< 0.05, ��P< 0.01, ���P< 0.001.

(B–G) TEM and 3D ssTEM reconstructions of amoeboid cell behaviour in sponge choano-

cytes. Shown are the highly inv and ps basal pole of the choanocyte (B, C), macropinocytotic

activity (�) at the apical pole (D, E) and a mesohyl-associated bacterium being engulfed by a ps

at the basal pole (F, G). ER, endoplasmatic reticulum; inv, invaginated; ps, pseudopodiated;

ssTEM, serial ultrathin transmission electron microscopy.

(PDF)

S1 Movie. 3D cellular architecture of choanoflagellate single cell S1. Colours coded as in Fig

1.

(MP4)

S2 Movie. 3D cellular architecture of choanoflagellate single cell S2. Colours coded as in Fig

1.

(MP4)

S3 Movie. 3D cellular architecture of choanoflagellate single cell S3. Colours coded as in Fig

1.

(MP4)

S4 Movie. 3D cellular architecture of choanoflagellate colonial cell C1. Colours coded as in

Fig 1.

(MP4)

S5 Movie. 3D cellular architecture of choanoflagellate colonial cell C2. Colours coded as in

Fig 1.

(MP4)
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5. Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, et al. Revisions to the classification, nomen-

clature, and diversity of eukaryotes. J Eukaryot Microbiol. 2018; https://doi.org/10.1111/jeu.12691

PMID: 30257078

6. Abedin M, King N. Diverse evolutionary paths to cell adhesion. Trends Cell Biol. 2010; 20: 734–742.

https://doi.org/10.1016/j.tcb.2010.08.002 PMID: 20817460

7. Carr M, Leadbeater BSC, Hassan R, Nelson M, Baldauf SL, Robertson HM, et al. Molecular phylogeny

of choanoflagellates, the sister group to Metazoa. Proc Natl Acad Sci. 2008; 105: 16641–16646. https://

doi.org/10.1073/pnas.0801667105 PMID: 18922774

8. Ruiz-Trillo I, Roger AJ, Burger G, Gray MW, Lang BF. A phylogenomic investigation into the origin of

metazoa. Mol Biol Evol. 2008; 25: 664–72. https://doi.org/10.1093/molbev/msn006 PMID: 18184723

9. Steenkamp ET, Wright J, Baldauf SL. The protistan origins of animals and fungi. Mol Biol Evol. 2006;

23: 93–106. https://doi.org/10.1093/molbev/msj011 PMID: 16151185

10. Mikhailov KV, Konstantinova AV, Nikitin MA, Troshin PV, Rusin LY, Lyubetsky VA, et al. The origin of

Metazoa: A transition from temporal to spatial cell differentiation. BioEssays. 2009; 31: 758–768.

https://doi.org/10.1002/bies.200800214 PMID: 19472368
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